Fast Shape Matching Using Statistical Features of Shape Contexts
نویسندگان
چکیده
منابع مشابه
Fast Shape Matching and Shape Analysis Using Shape Contexts and Wavelet Transform
Shape matching or recognition is computation intensity work in shape analysis. Paper [3] proposed an efficient shape matching method using shape contexts (SC). In this project, wavelet transform is used to scale or compress images into much smaller sizes and then shape context algorithm is used to match shapes. Simulation results show that the matching speed is faster and matching results are m...
متن کاملMatching with Shape Contexts
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solving for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each ...
متن کامل3D Shape Matching with 3D Shape Contexts
Content based 3D shape retrieval for broad domains like the World Wide Web has recently gained considerable attention in Computer Graphics community. One of the main challenges in this context is the mapping of 3D objects into compact canonical representations referred to as descriptors or feature vector, which serve as search keys during the retrieval process. The descriptors should have certa...
متن کاملShape Classification with Statistical Classifiers using Morphological Shape Representation Features
This paper compares the performance of four statistical classifiers, namely linear discriminant classifier, quadratic discriminant classifier, k-Nearest Neighborhood classifier, and parzen classifier are considered for recognition of 2D-shapes. The two features from morphological skeletons and four features from morphological shape decomposition are identified from 2D-shapes. These features are...
متن کاملFast Bayesian Shape Matching Using Geometric Algorithms
We present a Bayesian approach to comparison of geometric shapes with applications to classification of the molecular structures of proteins. Our approach involves the use of distributions defined on transformation invariant shape spaces and the specification of prior distributions on bipartite matchings. Here we emphasize the computational aspects of posterior inference arising from such model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2011
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e94.d.2056